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OPTIMAL DESIGN OF A SPHERICAL NET-LIKE SHELL 

WITH A FIXED FIRST EIGENFREQUENCY OF AXISYMMETRIC OSCILLATIONS* 

V.A. PURTOV and G.I. PSHENICHNOV 

A shell consisting of elastic bars the axes of which form a sufficiently dense net 
of equilateral triangles on a spherical surface (mean surface of the shell) is con- 
sidered. A continuous computational model /l/ and the optimal controltheorymethods 
are used to obtain a relationship between the radius of the thin-walled, tubular 
transverse cross section of the bars and the coordinate along the meridian of the 
middle surface. The relationship is such, that the dimensionless parameter of the 
first eigenfrequency of the axisymmetric shell oscillation is equal to some given 
value, and the functional governing the shell material volume assumes a minimumvalue. 
Numerical computation shows that this leads to substantial saving of material com- 
pared with the design in which the transverse cross sections of the bars are kept 
constant. 

1. Equations of state of the computational model of the shell with a net of bars under 
consideration, can be obtained as a particular case from the equations of work /l/. We shall 
write them in the form 

(1.1) 

Here F. J, and J, denote the area and moments of inertia of the transverse cross section of 
the bars in bending mode in the plane normal to the middle surface of the shell, and under 
torsion, E and G are the Young's and elastic shear moduli of the bar material, and a is the 
height of the equilateral triangles of the net. In the case of a triangular net of bars, their 
flexural rigidity in the plane tangent to the middle surface can be neglected in practice(J,= 

0). When y = 0 (disregarding the torsional rigidity of the bars), the equations (1.1) are 
transformed into the corresponding formulas for isotropic shells with the Poisson's ratio of 
the material equal to Y = lf3. In what follows, we shall consider the bars of tubular, thin- 

walled cross section. Denoting by r and 6 the radiusand thickness of the bar walls and assum- 
ing that 6" = 6/a = const , we obtain 

E’= 1/Pnf3s 
3k’ Y 

h=3l/?fk,,r, p=+ 

The mass of the bars per unit surface of the shell middle surface is 

3pFla = p’h, p’ = Gns"$k, 

where M and p' denote bar material density and relative density of the material of the comput- 
ational model. The volume of the bars can be written in the form 

I = 2 I/%WRT (1.2) 

*Prikl.Matem.Mekhan.,45,No.5,895-901,198l 

672 



A spherical shell with a fixed eigenfrequency oscillations 673 

and we shall solve the problem using the optimal control theOKy m?thOdS. 

2. Consider the following optimal control problem: to find a control function v* (t) and 
control parameters vector f* ensuring the minimum of the functional 

1 (V, 5) = i F (t, Z(t, V, g), V(t)> 5) dt + FT (5 (T, vf E)p 5) 

10 

on a fixed interval ItO, Tl, where x is an n-dimensional phase vector, v is a r-dimensional 
control function and f is the Q-dimensional vector of control parameters. The variation of 
the phase vector is 

where a dot denotes 
mined by the system 

described by the following system of differential equations: 

r' = f (L 5, u, 8, 5 (kJ = ro (2.1) 

differentiationwithrespect to t. The admissible set for x,v, ?, is deter- 
of constraints along the trajectory and terminal constraints 

r' (t, 2, v, 5) = 0 (S = 1, 2, . . .( I) 

r’ (t, I, v, E) < 0 (s = 1 -t 1, 2 + 2, . . . ,m) 

rT* (2 (T), V (T), 5) = 0 (S = 1, 2, . . . , IT) 

rTs (x (T), u'(T), 5) < 0 (S = IT + 1, IT + 2, . mT) 

Use of the numerical methods presupposes one or another form of discretization of the 
initial problem. In particular, the method of reducing the optimal control problems to the 
problem of nonlinear programming (e.g. /2,3/j has found wide acceptance. We shall consider 
the case of intergrating the system (2.1) by the Euler method (a detailed account for an arbi- 
trary Runge-Kutta scheme can be found in /4/). 

The system can be replaced by the following scheme: 

xi+1 = xi -1 hifi (ri, vi, 5) (i = 1, 2, . . ., k - 1) (2.2) 
ki = ti+, - ti, t, = to, tk = T, .Q = ~0 

V(t)=V(k) = Vi on the half-interval [ti, ti+,) (we shall denote, for brevity, any function m((ti) 

by cpi). 
We write the system of constraints in the form (i = 1, 2, . . .,k__l): 

l‘? @iv viv 5) = 0 (S = 1, 2, . . ., 1) 
(2.3) 

ris (Zi, Vi, E) < 0 (S = 1 + 1, 1 + 2, . . ., m) 
rT‘ (5b E) = 0 (s = 1, 2, . . ., IT) 
rTa @LV, 5) < 0 (s = 1T t 1, 1T t 2, . . ., “LT) 

The minimized functional assumes the form (V is a vector of dimension kr): 

P-l 
I(s(V* E)? 0, E)=,zI&Fi [Si(S* * . . t vi-lr E)? Vjr 51 + FT (Tk(L!v E)t E) 

x = {x,1, . . ., xp, . . ., xt*,, v = {IQ, . . ., VIT, vg, . . . ( veTr . . ., d-d 
Thus the initial optimal control problem has been reduced to a problem of nonlinear program- 
ming, namely to the problem of finding a minimum of the functional Z(v, 5) in the presence of 
the constraints (2.3). 

A large class of the nonlinear programming methods will reduce the initial problem tothat 
of solving a sequence of problems of unconditional minimization of a differential function of 
the form 

k-1 
G(r(V)*V, 5)=iI;11ri~i(zi,Vi,E)+b(r,,~) (2.4) 

The method of external penalty functions in particular refers to such methods. Here the func- 
tion G can be written in the form 

k-1 I 

i=l 6=1 

where T is the penalty coefficient, m(g) is a function differentiable in g, cp (g) > 0 and 
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strictly increasing when 
Use of the gradient 

culating the gradient of 
ledge of the -kr values 
rule, the values ranging 

g>o, and m(g)= Cl when g GO, 
methods of unconditional minimization leads to the necessity of cal- 
G. Computing the gradient by numerical methods requires the know- 
of the function G (in real problems the quantity kr assumes, as a 
from IO" to 103) . It follows that the trajectory must be computed 

the same number of times. An attempt at direct integration of the complicated function C 
over the components (i:: 1,2,. . .,k- I;] :- I,&. ., r), yields very bulky formulas. We shall follow 
a method given in /4/ enabling us to obtain the value of the gradient relatively simply. 

We introduce a system of vectors pc of dimension n, given by the recurrent relations 

We have for all VI 

ac ab(zk b4) 
Pk” T=ar 

k 

(i=1,2 ,..., k-l) 

dG dG %+1 
-q-=Yq + rpj+l (i=1,2,...,k-1) 

t 

(2.5) 

Indeed, taking into account the relations (2.2) and using the rules of differentiating a fun- 
ction of a function, we obtain 

pk 

azk-l 2 ax 
8C _ 

+ $+, azk__l ‘k = auk_% - + 2 Pk_1 

Further, using the sequence (2.51, we obtain (2.6). 
Similarly we derive the formula 

(2.7) 

Let us write the relations (2.5)- (2.7), obtained for the function G written in the form 
(2.4) 

pi = PC+I -t- hi 
aBf (z*v “3’ 5) (2.8) 

axi 

Pk = 
ab b,,.’ 6) 

a=k 
(i=1,2,...,k--l) 

12.91 

(2.10) 

Thus we see that to obtain the gradient of G, we must integrate the system (2.21, calculate 
PI from the recurrence relations (2.8), and substitute them into the formulas (2.91, (2.10). 

Let us now return to the optimization problem in question. Using (1.1) we can write the 
system of differential equations of free axisymmetric oscillations of the net-like spherical 
shell of radius R, in the form 

2" = -(1 - Y&1 ctg i! - 52 + vz! ctg t + (ctgZt - 528) vz6 (2.11) 

2.2 = (1 + y&l - 12 ctg t + (1 - 8%) ur' + vti ctg t 

5.3 = -_2? - (1 - Y&3 ctg t - 29 ctg*tzsii2 
s-1 = 25 - I@ 

5.5 = (1 - Y12)V-Y - (l + v,)ti - v,i ctg tf 
2.6 = -12 (1 - Y,2)?PZ3 - v&J ctg t 

21 = N, I ER, x= = QiER 3 = MJER’ 

9 = w/R, 2 = u/R. i ‘= --yx 

{a = t is the angle of width ofthemiddle surface). For the dimensionless parameter of the 
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circular frequency 51 of free oscillations, we obtain 

Ba =~'lPO" 3pRW 
E’ =E 

Let us assume that the shell is rigidly clamped at the mutually parallel t =&I and t = 2' 

tizA=$=r6=0 for t = to, T (2.12) 

The problem is formulated as follows: to find, for a fixed value of the dimensionless para- 
meter of the first eigenfrequency of the natural axisymmetric oscillations of the spherical 
shell, the control function v*(t) ensuring a minimum of the functional (1.2) (minimum volume 
of the shell bars). Moreover, the phase vector must satisfy the differential equations (2.11) 
and constraints (2.12). 

3. We give the results of solving the problem for the case 

t,=n/6; T=n/2; Sla = 1.28 

The Euler scheme with recomputation at k=iOZ ensures a sufficient accuracy of computations. 
Since the solution of the homogeneous boundary value problem (2.11), (2.12) is obtained with 
the accuracy of up to the constant multiplier, we put zl(to)= 1 (normalization of the eigen- 
functions) and thus discard the trivial solution. We minimize the function 

k-1 

$,I” = z hiui sin ti 
i=l 

in the presence of the terminal constraints 

rT1 = x4 (T) = 0, l-,,.% = z5 (T) = 0, rTJ = 16 (T) = 0 

with the constraints along the trajectory absent. The function (2.4) assumes the form 

k-1 
c ~= 2 hiUi sin ti + T [(r,ly + !rTy + (r,y] 

1=1 
and the control parameters vector is 5 = (+a(to),.~3(to)). The method of penalty functions was used 
to obtain the initial approximation r,,, &, and the solution v*. E* was then found with pre- 
scribed accuracy using the method of generalized Lagrange multipliers. The reasons for this 

choice of methods and the order in which they were used the following. The penalty function 

method discovers, relatively rapidly, the region which we shall describe as good initial ap- 

proximation. The attempt, however, to obtain the exact value of the extremum leads to the 

appearance of characteristic "rolling", when the value of the penalty decreases appreciably 

from one cycle to the next while the value of the function increases, and vice versa. During 
this process the value of G decreases by an insignificant amount. On the other hand, isknown 

that the method of Lagrange multipliers is preferably used when the initial point lies at some 

distance from the extremum. 

For the unconditionalminimizationthe method of conjugate gradients with a small reduc- 
tion cycle, was found to be the most suitable, since the undulating character of the function 

G leads to appreciable errors in selecting the direction in the course of increasing the para- 

meter of the reduction cycle. For this reason the method of conjugate gradients was found to 

be more effective than the method of quickest descent or the methods not utilizing the grad- 

ient (such as the Hooke-Jeeves method). 

In the case y=O (torsional rigidity of the bars is disregarded) the change in the dim- 

ensionless radius of the tubular cross section of the bars along the meridian of the shell 
middle surface, is characterized by the solid curve in Fig.1 and we have here I" = 5.41.10-Z. A 

solution for u= constwas obtained for comparison. In this case we assumed that 5 = v W, 9 (to), 
v) I and we minimized the error function at the right end of the trajectory 

"p I (z4 V’))2 _I- (z” (TV + (2 (T))21 

The method of conjugate gradients was used to obtain the solution. Since the system of 

equations (2.11) is linear, we have also obtained a solution based on the orthogonal run. The 

result obtained in the second case was found to be slightly better since it used less computer 
time. It follows therefore that the error function is best minimized with nonlinear equations. 
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Fig.1 
-%!I 

Fig.2 

Solving the problem (v= 0) gave ZJ = 0.0450 (hori- 
zontal straight line in Fig.l),which corresponds 
to the value Ia= 6.75.10-p of the functional. It 
follows that the volume of the shellbarmaterial 
is in this case greater than the optimal volume, 
by 24.6%. 

Taking into account the torsional rigidity 
of the bars and assuming that y =0.769, we 
obtain a slightly different solution (dashedline 

.Jfl /II n “’ in Fig.1). In this case we have I"= 4.72.10-z for 
the optimal solution (the shell bar material vol- 

Fig.3 ume is reduced by 12.7% compared withtheoptimal 
variant of the net-like shell at y= 0). 

Figs.2 and 3 show the deflections and longitudinal displacements of the pointsofthemiddle 
surface of the shell. The dash and dot-dash curves correspond to the optimal variants for 
y = 0 and y = O.i69. Solid lines correspond to the case when y: 0 and the radii of the tubular 
cross sections of the shell bars are constant. 
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